منابع مشابه
Parsimonious classification via generalised linear mixed models
We devise a classification algorithm based on generalised linear mixed model (GLMM) technology. The algorithm incorporates spline smoothing, additive model-type structures and model selection. For reasons of speed we employ the Laplace approximation, rather than Monte Carlo methods. Tests on real and simulated data show the algorithm to have good classification performance. Moreover, the result...
متن کاملOptimal Predictive Design Augmentation for Spatial Generalised Linear Mixed Models
A typical model for geostatistical data when the observations are counts is the spatial generalised linear mixed model. We present a criterion for optimal sampling design under this framework which aims to minimise the error in the prediction of the underlying spatial random effects. The proposed criterion is derived by performing an asymptotic expansion to the conditional prediction variance. ...
متن کاملglm-ie: Generalised Linear Models Inference & Estimation Toolbox
The glm-ie toolbox contains functionality for estimation and inference in generalised linear models over continuous-valued variables. Besides a variety of penalised least squares solvers for estimation, it offers inference based on (convex) variational bounds, on expectation propagation and on factorial mean field. Scalable and efficient inference in fully-connected undirected graphical models ...
متن کاملAnalysis of Binary Response Data by Generalised Linear Models
In a linear model approach to the analysis of binary data, parameters of the model may be estimated by the method of maximum likelihood, or by weighted or unweighted least squares. The technique of generalized linear models permits maximum likelihood estimates of parameters to be obtained by iterative weighted least squares, with tests of significance based on analysis of deviance, a generaliza...
متن کاملSpectral learning of linear dynamics from generalised-linear observations with application to neural population data
Latent linear dynamical systems with generalised-linear observation models arise in a variety of applications, for instance when modelling the spiking activity of populations of neurons. Here, we show how spectral learning methods (usually called subspace identification in this context) for linear systems with linear-Gaussian observations can be extended to estimate the parameters of a generali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2013
ISSN: 1556-5068
DOI: 10.2139/ssrn.2335356